With a big assist from artificial intelligence and a heavy dose of human touch, Tim Cernak's lab at the University of Michigan has made a discovery that dramatically speeds up the time-consuming chemical process of building molecules that will be tomorrow's medicines, agrichemicals, or materials.
The discovery, published in the Feb. 3 issue of Science, is the culmination of years of chemical synthesis and data science research by the Cernak Lab in the College of Pharmacy and Department of Chemistry.
The goal of the research was to identify key reactions in the synthesis of a molecule, ultimately reducing the process to as few steps as possible. In the end, Cernak and his team achieved the synthesis of a complex alkaloid found in nature in just three steps. Previous syntheses had taken between seven and 26 steps.
Making a chemical structure that has atoms in just the right place to give you efficacious and nontoxic medicines, for instance, is tricky, said Cernak, assistant professor of medicinal chemistry and chemistry. "It requires a chemical synthesis strategy grounded in the chemical building blocks you can actually buy and then stitch together using chemical reactions".
The accomplishment has powerful implications for speeding up the development of medicines.
Cernak compared the construction of these complex molecules to playing chess. You need to orchestrate a series of moves to reach the end of the game. While there's a near-infinite number of possible moves, there's logic to follow.
Using an algorithm they developed to curate the data, the researchers identified the steps along the pathway that were high impact, or key steps, and the steps that were making progress toward completing the synthesis but ultimately inefficient for the whole process.
Reference:
Yingfu Lin et al, Computer-aided key step generation in alkaloid total synthesis, Science (2023).
DOI: 10.1126/science.ade8459
Journal information: Science
By Jaideep Khandekar
Comments